Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners.

نویسندگان

  • André Rupp
  • Alexander Gutschalk
  • Stefan Uppenkamp
  • Michael Scherg
چکیده

The resolution of the temporal processing in the primary auditory cortex (PAC) was studied in human listeners by using temporal gaps of 3, 6, 10, and 30 ms inserted in 100-ms noise bursts. Middle latency auditory-evoked fields (MAEFs) were recorded and evaluated by spatio-temporal source analysis. The dependency of the neurophysiological activation at about 37 ms (P37m) on the temporal position of the gap was investigated by inserting silent periods 5, 20, and 50 ms after noise burst onset. The morphology of the waveforms evoked by the gap showed that the MAEFs were largely determined by the on-response to the noise burst following the gap. The comparison of the source waveforms revealed two major effects: 1) the amplitudes of the MAEFs increased with longer gap durations and 2) the amplitudes increased with the length of the leading noise burst. When the gap was inserted after 50 ms, a significant deflection of the collapsed left and right hemisphere data was observed for all gap durations. The P37m amplitude failed to reach significance for the shortest gap duration of 3 ms when the gap occurred after 20 and 5 ms. These neuromagnetically derived minimum detectable gap responses closely resembled psychoacoustic thresholds obtained from the same subjects (leading noise burst, 50 ms: 2.4 ms; 20 ms: 3.2; and 5 ms: 5.3 ms). The correspondence between psychoacoustic thresholds and the cortical activation indicates that the recording of MAEFs provides an objective and noninvasive tool to assess cortical temporal acuity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase effects on the middle and late auditory evoked potentials.

A masking level difference (MLD) paradigm was used to investigate the presence of an electrophysiologic correlate of the psychoacoustic MLD in the middle and late auditory evoked potentials. In experiment 1, middle latency potentials were recorded in six normal-hearing young adults using vertex and temporal electrode montages. Tone bursts of 500 Hz presented in SoNo and Spi No conditions produc...

متن کامل

Temporal processing in the aging auditory system.

Measures of monaural temporal processing and binaural sensitivity were obtained from 12 young (mean age = 26.1 years) and 12 elderly (mean age = 70.9 years) adults with clinically normal hearing (pure-tone thresholds < or = 20 dB HL from 250 to 6000 Hz). Monaural temporal processing was measured by gap detection thresholds. Binaural sensitivity was measured by interaural time difference (ITD) t...

متن کامل

Human auditory brainstem response to temporal gaps in noise.

Gap detection is a commonly used measure of temporal resolution, although the mechanisms underlying gap detection are not well understood. To the extent that gap detection depends on processes within, or peripheral to, the auditory brainstem, one would predict that a measure of gap threshold based on the auditory brainstem response (ABR) would be similar to the psychophysical gap detection thre...

متن کامل

Auditory temporal processes in normal-hearing individuals and in patients with auditory neuropathy.

OBJECTIVE To study objectively auditory temporal processing in a group of normal hearing subjects and in a group of hearing-impaired individuals with auditory neuropathy (AN) using electrophysiological and psychoacoustic methods. METHODS Scalp recorded evoked potentials were measured to brief silent intervals (gaps) varying between 2 and 50ms embedded in continuous noise. Latencies and amplit...

متن کامل

Biological Markers of Auditory Gap Detection in Young, Middle-Aged, and Older Adults

The capability of processing rapid fluctuations in the temporal envelope of sound declines with age and this contributes to older adults' difficulties in understanding speech. Although, changes in central auditory processing during aging have been proposed as cause for communication deficits, an open question remains which stage of processing is mostly affected by age related changes. We invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2004